You are here

Transcending Duality through Tensional Integrity

Part 2: From systems-versus-networks to tensegrity organization (Part #1)


Working paper prepared for the sub-project on networks of the Goals. Processes and Indicators of Development Project of the Human and Social Development Programme of the United Nations University (Tokyo), coordinated from the Institut universitaire d'etudes du developpement (Geneva). Originally published in Transnational Associations, 1978, 5, pp. 258-265 [PDF version]. See also Part 1 and subsequent papers.


If "domes blow peoples minds" .... 

What would "tensegrity organizations" do ?

Psycho-social Parallel: the Parts

Those who have handled models of tensegrity structures (discussed in Part 1 of this article, pages 248-257) are tantalised by their relative indestructibility despite their apparently extreme fragility - they seem to have some as yet hidden significance. The principles have only been used so far to build geodesic domes, whether large or small (13), although they are important to design for space missions (14). But, as Hugh Kenner notes; "If tensegrity has a practical use... the first principles of that usefulness remain to be investigated" (p. ix-x). Anthony Pugh goes even further: "Tensegrity systems are so fascinating that one instinctively feels they must be significant, even if it may be difficult to predict their most important application... The major importance of tensegrity may not be for structures but for something entirely different, such as philosophy." (p. 56).

Fuller's own focus is on tangible structures, but he uses them in his somewhat elusive fashion to demonstrate principles that are far more general. They do not apparently exclude relevance to psycho-social structures (as the title of his book indicates). He argues, for example, that if tension is secondary and local in all men's structural projections, that tension must also be secondary in man's philosophic reasoning (p. 350).

The first task then is to explore some of the lines of equivalence between psycho-social structures and the architectural elements referred to in the previous sections (see Part 1, pp. 248-253).

1. Structure

The meaning to be attached to "structure" is a topic of continuing debate in the social sciences (15). Attention in this article is focussed primarily on structure in organizations as networks, and in networks of organizations (16), "world problems" (17), and concepts / beliefs (18).

Such concepts of structure are not purely descriptive but lend themselves to an element of design in any social transformation process. Structure is therefore considered to be the relationship among elements in a psycho-social unit.

2. Node

At the nodes compression and tension elements meet. Fuller gives a very abstract description of them that is valid for psycho-social systems (see footnote 12, Part 1). In the case of organizations, they may be tentatively thought of as roles, functions, or function-roles since these are indeed the focal points for energy events in an organization system.

3. Compression element

If nodes A and B are linked in "compression" then the nature of the compression element in an organization system appears to lie in the common factor in the following:

  • A is counter-function of B, and vice versa
  • A and B are mutually controlling, or mutually "marking" (to use a football term)
  • A acts in counter-response to B, and vice versa
  • A is constrained by B. and vice versa A acts to eliminate the effects of B, and vice versa
  • A "struggles" and "bargains" with B, and vice versa.
In some way A and B each act to keep the other "backed against the ropes" (to use a boxing term), to keep each other under pressure. They "work", or "operate" on each other and in response to each other, providing input to each other and transforming each other's output (19). It is a stimulus-response, action-reaction relationship. It is the essence of a working relationship in which contiguous boundaries are defined in order to maintain the operational distinction between two fundamentally different approaches (to energy transformation, in its most general sense), which are nevertheless each the prime justification for the other's existence (20).

The concept of the classicial syzygy is also indicative: state of being yoked together; a pair of correlatives or opposites, the existence of which is maintained by its essential complementarily. Complementarity itself is intimately associated with the concept underlying compression (21). At best, it is a relationship of creative opposition appreciated for its real and meaningful challenge, fundamental to the dynamics of the system. At worst it is a source of extreme hostility whose consequences constantly endanger the integrity of the system (or possibly even prevent its creation, in the case of an organization).

It may be argued that many psychosocial systems do not appear to have such opposed elements within them. However, as will be argued below, such "systems" are usually sub-systems whose elements do have such relationships to elements in other sub-systems, which are the justification for their continued existence. The "other" sub-system need not be an organization, for example, it could well be a problem complex, which is the focus of the first sub-system's concern. In fact, it may well be argued that a system is not stable if such opposed elements cannot be integrated within it to provide it with adequately structured dynamics.

If there is a parallel between the building principles favoured and those embodied in social structures, then most of our social structures should have a "compressive" element predominating, whereas the "tension" element should be secondary. In the case of a conventionally structured organization (whether a government bureaucracy. a commercial enterprise or a military unit), the nature of the compressive element seems to be embodied in the constraint associated with formal lines of authority and command, or in the employer / employee relationship of management and orders.

Such formal relationships are usually asymmetric: A constrains B by directives and not the reverse. Similarly in buildings, beam A compresses beam B and not the reverse. (Although, in both cases, A is not unconstrained by its relationship to B.) In compressively discontinous tensegrity structures, however, A acts on B as much as B acts on A, since they are forced together by the continuity of the tensional elementc to which they are respectively linked. The relationship is symmetric, although momentary asymmetry may emerge whenever the equilibrium of the tensegrity system is disturbed (22).

The corresponding tension element would then be associated with liaison and advisory relationships or influence (as opposed to command). Clearly it is standard practice to maintain continuity between the compressive elements of the organizational system, with occasional (i.e. discontinuous) tensional (liaison) elements where necessary to keep the organization functioning coherently as a whole. With this approach society has succeeded in constructing extremely sophisticated organizational hierarchies - and there is a parallel with the progressively more sophisticated techniques for constructing load-bearing arches (see Diagram 1), if one considers the resemblance between multi-level arches and any conventional organization chart. Such structures are not proving adequate to the times however. They are cumbersome and ineffective in many ways - the term "spastic dinosaurs" has been used.

Fuller suggests however: "Compression is that "realistic hard core" that men love to refer to, and its reality was universal, ergo comprehensive. Man must now break out of that habit and learn to play at nature's game where tension is primary and where tension explains the coherence of the whole. Compression is convenient, very convenient, but always secondary and discontinuous" (p. 356). The same could prove to be true for organizations.

4. Tension element

If nodes A and C are linked in "tension", then the nature of the tension element in an organizational system appears to lie in the common factor in the following:

  • A shares with C, and vice versa
  • A has an affinity to C, and vice versa
  • A responds in sympathy to C, and vice versa
  • A adjusts itself in relationship to C, and vice versa
  • A relates to and communicates with C, and vice versa
  • A defines itself in relationship to C, and vice versa
  • A cooperates with C, and vice versa.
In an organization, tension is closely linked to the notion of a bond in its most general sense and the consequences of the associated information transfer.

In contrast to compression elements which are by definition discontinuous (in a tensegrity system), the special nature of a tension element only emerges in terms of its relationship to the continuous tensional network as an integral pattern (23). (This is considered below). In social psychology, this has been explored (although perhaps not exhaustively) under the concept of small group "cohesiveness" or interpersonal attraction, namely "The resultant of all the forces acting on all the members to remain in the group" (24). One consequence of cohesiveness can cause another, and many of the consequences can cause interpersonal attraction, particularly in small groups. Communication, which is both an effect and a cause of interpersonal attraction, may however be of greater significance to the cohesiveness of larger groups where face-to-face contact is limited-and may thus be more relevant to the notion of a tensional network.

Fuller makes the point that little use has been made of tensile structural elements and that it is only in this century that materials have been developed of comparable strength to compression elements. Whether or not this is true in psycho-social systems, it can be argued that tensile liaison-type bonds characteristic of most organizations (including "cooperative relationships", "old boy networks", etc.) have been relatively weak compared to other bonds that have been used in the past (e.g. "blood bonds" or the "binding oaths" used by secret societies, religious orders, and extremist political groups). Alternative kinds of strong tension bonds may be possible - some may result from the operational bonds between those intensively linked in computer conferencing networks, for example.

 
"Tensegrity and Philosophy"

"Tao is obscured when men understand only one of a pair of opposites, or concentrate only on a partial aspect of being. Then clear expression also becomes muddled by mere word-play, affirming this one aspect and denying all the rest. Hence the wrangling of Confucians and Mohists; each denies what the other affirms, and affirms what the other denies. What use is this struggle to set up "No" against "Yes", and "Yes" against "No" ? Better to abandon this hopeless effort... The possible becomes impossible; the impossible becomes possible. Right turns into wrong and wrong into right - the flow of life alters circumstances and thus things themselves are altered in their turn. But disputants continue to affirm and to deny the same things they have always affirmed and denied, ignoring the new aspects of reality presented by the change in conditions. 

The wise man therefore... sees that on both sides of every argument there is both right and wrong. He also sees that in the end they are reducible to the same thing, once they are related to the pivot of Tao. When the wise man grasps this pivot, he is the canter of the circle, and there he stands while "Yes" and "No" pursue each other around the circumference" 

(The Way of Chuang Tzu, interpreted by Thomas Merton London. Unwin, 1970)

>The Way of Chuang Tzu, interpreted by Thomas Merton London. Unwin, 1970)

[Parts: Next | Last | All ] [Links: To-K | From-K | From-Kx | Refs ]